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Chiral Magnetic Wave 

Chiral Magnetic Wave at finite baryon density and the 
Electric Quadrupole Moment of quark-gluon plasma; 
the signature: 

Separating Chiral Magnetic and Chiral Vortical Effects 
using the Baryon Number asymmetries

Outline

DK, H.-U. Yee, 
arXiv:1012.6026 [hep-th]

Y. Burnier, DK, J. Liao, H.-U. Yee, 
to appear (very soon!)

DK, D.T.Son, arXiv:1010.0038;
Phys.Rev.Lett. ‘11

v2(π+) < v2(π−)



Chiral Magnetic Spiral.
Gokce Basar, Gerald V. Dunne (Connecticut U.), Dmitri E. Kharzeev 
(Brookhaven). Phys.Rev.Lett. 104 (2010) 232301 

Magnetic-Field-Induced insulator-conductor transition in SU(2) quenched 
lattice gauge theory.
P.V. Buividovich (Moscow, ITEP & Dubna, JINR), M.N. Chernodub (Tours U. & 
Gent U.), D.E. Kharzeev (Brookhaven & Yale U.), T. Kalaydzhyan (DESY & 
Moscow, ITEP), E.V. Luschevskaya (Moscow, ITEP & Dubna, JINR), M.I. 
Polikarpov (Moscow, ITEP). Phys.Rev.Lett. 105 (2010) 132001 

5.
Quark fragmentation in the θ-vacuum.
Zhong-Bo Kang (RIKEN BNL), Dmitri E. Kharzeev (Brookhaven). 
Phys.Rev.Lett. 106 (2011) 042001 

Other recent work on LPV and CME that
I will not cover today:

Real-time dynamics of the Chiral Magnetic Effect.
Kenji Fukushima (Kyoto U.), Dmitri E. Kharzeev (Brookhaven), Harmen J. 
Warringa (Frankfurt U.). Phys.Rev.Lett. 104 (2010) 212001 

10.
Electric-current Susceptibility and the Chiral Magnetic Effect.
Kenji Fukushima (Kyoto U., Yukawa Inst., Kyoto), Dmitri E. Kharzeev 
(Brookhaven), Harmen J. WarringaNucl.Phys. A836 (2010) 311-336 
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excess of positive
charge

excess of negative
charge

Electric dipole moment of QCD matter!
DK, Phys.Lett.B633(2006)260 [hep-ph/0406125]

Charge asymmetry w.r.t. reaction plane 
as a signature of local strong P violation
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excess of positive
charge

excess of negative
charge

Y.Burnier, DK, J. Liao, H.-U.Yee, to appear

Finite baryon density (low energies): 
electric quadrupole moment of QGP? 
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Chiral Magnetic Effect:
a brief summary

Relativistic ions create
a strong magnetic field:

H
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Heavy ion collisions as a source of the strongest 
magnetic fields available in the Laboratory

DK, McLerran, Warringa, 
Nucl Phys A803(2008)227

In a conducting
plasma, Faraday
induction can make
the field long-lived:
K.Tuchin, arXiv:1006.3051



The situation is different if the field θ = θ("x, t) varies in space-time.
Indeed, in this case we have

θ ˜F µνFµν = θ∂µJ
µ
CS = ∂µ [θJµ

CS]− ∂µθJ
µ
CS. (16)

The first term on r.h.s. is again a full derivative and can be omitted; intro-
ducing notation

Pµ = ∂µθ = (M, "P ) (17)

we can re-write the Lagrangian (12) in the following form:

LMCS = −1

4
F µνFµν − AµJ

µ +
c

4
PµJ

µ
CS. (18)

Since θ is a pseudo-scalar field, Pµ is a pseudo-vector; as is clear from (18),
it plays a role of the potential coupling to the Chern-Simons current (15).
However, unlike the vector potential Aµ, Pµ is not a dynamical variable and
is a pseudo-vector that is fixed by the dynamics of chiral charge – in our case,
determined by the fluctuations of topological charge in QCD.

In (3+1) space-time dimensions, the pseudo-vector Pµ selects a direction
in space-time and thus breaks the Lorentz and rotational invariance: the
temporal component M breaks the invariance w.r.t. Lorentz boosts, while
the spatial component "P picks a certain direction in space. On the other
hand, in (2 + 1) dimensions there is no need for the spatial component "P
since the Chern-Simons current (15) in this case reduces to the pseudo-scalar
quantity ενρσAνFρσ, so the last term in (18) takes the form

∆L = c MενρσAνFρσ. (19)

This term is Lorentz-invariant although it still breaks parity. In other words,
in (2+1) dimensions the vector "P can be chosen as a 3-vector pointing in the
direction of an ”extra dimension” orthogonal to the plane of the two spatial
dimensions. This illustrates an important difference between the roles played
by the Chern-Simons term in even and odd number of space-time dimensions.
It is well-known that the term (19) leads to a gauge-invariant mass of the
photon; we will also see that it plays an important role in the Hall effect.

4.2. Maxwell-Chern-Simons equations
Let us write down the Euler-Lagrange equations of motion that follow

from the Lagrangian (18),(15) (Maxwell-Chern-Simons equations):

∂µF
µν = Jν − PµF̃

µν . (20)
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4. Topology-induced effects in electrodynamics:
Maxwell-Chern-Simons theory

4.1. The Lagrangian

Let us begin by coupling the theory (1) to electromagnetism; the resulting
theory possesses SU(3)× U(1) gauge symmetry:

LQCD+QED = −1

4
Gµν

α Gαµν +
∑

f

ψ̄f [iγµ(∂µ − igAαµtα − iqfAµ)−mf ] ψf−

− θ

32π2
g2Gµν

α G̃αµν −
1

4
F µνFµν , (11)

where Aµ and Fµν are the electromagnetic vector potential and the corre-
sponding field strength tensor, and qf are the electric charges of the quarks.

Let us discuss the electromagnetic sector of the theory (11). Electromag-
netic fields will couple to the electromagnetic currents Jµ =

∑
f qf ψ̄fγµψf .

In addition, the term (10) will induce through the quark loop the coupling of
FF̃ to the QCD topological charge. We will introduce an effective pseudo-
scalar field θ = θ(&x, t) (playing the role of the axion field) and write down
the resulting effective Lagrangian as

LMCS = −1

4
F µνFµν − AµJ

µ − c

4
θ ˜F µνFµν , (12)

where
c =

∑

f

q2
fe

2/(2π2). (13)

check the coefficient and sign of AµJµ

This is the Lagrangian of Maxwell-Chern-Simons, or axion, electrodynam-
ics. If θ is a constant, then the last term in (12) represents a full divergence

˜F µνFµν = ∂µJ
µ
CS (14)

of the Chern-Simons current

Jµ
CS = εµνρσAνFρσ, (15)

which is the Abelian analog of (4). Being a full divergence, this term does
not affect the equations of motion and does not affect the electrodynamics.
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From QCD back to electrodynamics:
Maxwell-Chern-Simons theory

Axial current
  of quarks

Photons

EM fields in QCD “aether”



The first pair of Maxwell equations (which is a consequence of the fact that
the fields are expressed through the vector potential) is not modified:

∂µF̃
µν = Jν . (21)

It is convenient to write down these equations also in terms of the electric "E
and magnetic "B fields:

"∇× "B − ∂ "E

∂t
= "J + c

(
M "B − "P × "E

)
, (22)

"∇ · "E = ρ + c"P · "B, (23)

"∇× "E +
∂ "B

∂t
= 0, (24)

"∇ · "B = 0, (25)

where (ρ, "J) are the electric charge and current densities. One can see that
the presence of Chern-Simons term leads to essential modifications of the
Maxwell theory. Let us look at a few known examples illustrating the dy-
namics contained in Eqs(22),(23),(24),(25).

4.2.1. The Witten effect
Let us consider, following Wilczek [10], a magnetic monopole in the pres-

ence of finite θ angle. In the core of the monopole θ = 0, and away from
the monopole θ acquires a finite non-zero value – therefore within a finite
domain wall we have a non-zero "P = "∇θ pointing radially outwards from
the monopole. According to (23), the domain wall thus acquires a non-zero
charge density c"∇θ · "B. An integral along "P (across the domain wall) yields∫

dl ∂θ/∂l = θ, and the integral over all directions of "P yields the total mag-
netic flux Φ. By Gauss theorem, the flux is equal to the magnetic charge of
the monopole g, and the total electric charge of the configuration is equal to

q = c θ g =
e2

2π2
θ g =

e

2π2
θ (eg) = e

θ

π
, (26)

where we have used an explicit expression (13) for the coupling constant c,
as well as the Dirac condition ge = 2π × integer.
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Assuming that the domain walls are thin compared to the distance L between
them, we find that the system possesses an electric dipole moment

de = c θ (B · S) L =
∑

f

q2
f

(
e

θ

π

) (
eB · S

2π

)
L; (29)

in what follows we will for the brevity of notations put
∑

f q2
f = 1; it is easy

to restore this factor in front of e2 when needed.

!B

!E

∼ + eθ
π · eB

2π

∼ − eθ
π · eB

2π

θ != 0

θ = 0

θ = 0

Figure 2: Charge separation effect – domain walls that separate the region of θ != 0 from
the outside vacuum with θ = 0 become charged in the presence of an external magnetic
field, with the surface charge density ∼ eθ/π · eB/2π. This induces an electric dipole
moment signaling P and CP violation.

Static electric dipole moment is a signature of P , T and CP violation (we
assume that CPT invariance holds). The spatial separation of charge will
induce the corresponding electric field #E = c θ #B. The mixing of pseudo-
vector magnetic field #B and the vector electric field #E signals violation of P ,
T and CP invariances.
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The Chiral Magnetic Effect I:
Charge separation  
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DK ’04;
DK, A. Zhitnitsky ‘06

!P ≡ !∇θ



Note that this current directed along the magnetic field !B represents a P−,
T − and CP− phenomenon and of course is absent in the ”ordinary” Maxwell
equations. Integrating the current density over time (assuming that the field
!B is static) we find that when θ changes from zero to some θ "= 0, this results
in a separation of charge and the electric dipole moment (29).

!B

θ = 0

θ̇ != 0

!J ∼ eθ̇
π · e #B

2π

Figure 3: The chiral magnetic effect – inside a domain with θ̇ "= 0 an external magnetic
field induces an electric current "J ∼ eθ̇/π · e "B/2π. θ̇ "= 0 indicates the change of the chiral
charge inducing an asymmetry between the left– and right– handed fermions inside the
domain. Note that the current "J ∼ "B is absent in Maxwell electrodynamics.

Let us discuss the meaning of formula (30) in more detail. To do this,
let us consider the work done by the electric current; to obtain the work per
unit time – the power P – we multiply both sides of (30) by the electric field
!E and integrate them over the volume (as before, we assume that θ does not
depend on spatial coordinates):

P =

∫
d3x !J · !E = −θ̇

e2

2π2

∫
d3x !E · !B = −θ̇ Q̇5, (31)
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The chiral magnetic effect II:
chiral induction 

DK, L. McLerran, H. Warringa ’07;
K. Fukushima, DK, H. Warringa ’08;
DK, H.Warringa arXiv:0907.5007

!J = − e2

2π2
θ̇ !B



DK, H.-U. Yee, 
arXiv:1012.6026 [hep-th]

The Chiral Magnetic Wave
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Propagating chiral wave:

Gapless collective mode

CME                         Chiral separation

Electric

Chiral



The Chiral Magnetic Wave
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DK, H.-U. Yee, 
arXiv:1012.6026 [hep-th]



R

excess of Right
chiral charge

Chiral dipole moment of QCD matter
D. Son et al;

V. Miransky et al

Quadrupole moment from CMW:
step 1, chiral separation

L excess of Left
chiral charge
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excess of positive
charge

excess of negative
charge

Electric quadrupole moment of QCD matter!
Y.Burnier, DK, J. Liao, H.-U.Yee, to appear

Electric quadrupole moment of QGP 
at finite baryon density as a signature

+
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The first pair of Maxwell equations (which is a consequence of the fact that
the fields are expressed through the vector potential) is not modified:

∂µF̃
µν = Jν . (21)

It is convenient to write down these equations also in terms of the electric "E
and magnetic "B fields:
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∂t
= "J + c

(
M "B − "P × "E

)
, (22)
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where (ρ, "J) are the electric charge and current densities. One can see that
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!P ≡ !∇θ



Chiral dipole moment of QGP 
      at finite baryon density

Y.Burnier, DK, J. Liao, H.-U.Yee, to appear



Electric quadrupole moment of QGP 
at finite baryon density

Y.Burnier, DK, J. Liao, H.-U.Yee, to appear



Elliptic flow of positive hadrons should be 
smaller than of negative ones (without
absorption effects - e.g. antiproton annihilation)

Electric quadrupole moment of QGP: 
the signature

Y.Burnier, DK, J. Liao, H.-U.Yee, to appear

-

+

+

-
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The difference of elliptic flows: 
quantitative estimates

+

Y.Burnier, DK, J. Liao, H.-U.Yee, to appear

+
A few percent difference in v_2?

Preliminary

v2(π+) < v2(π−)
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A new test of CME: 
baryon asymmetry

CME Vorticity-induced “Chiral 
Vortical Effect”

CME: 
(almost) only 
electric charge 
separation

CVE: 
(almost) only 
baryon charge 
separation

DK, D.T.Son
arXiv:1010.0038



Anomalies lead to a number of subtle and beautiful 
phenomena in the chirally restored phase of QCD

Chiral Magnetic Wave at finite baryon density and the 
Electric Quadrupole Moment of quark-gluon plasma; 
the signature:                         

Separating Chiral Magnetic and Chiral Vortical Effects 
using the Baryon Number asymmetries

Summary

v2(π+) < v2(π−)

Measurements would be extremely useful!


